Optimizing Fuel, Cargo, and Passenger Payload on Long Haul Flights

Michael E. Irrgang AGIFORS - 1999

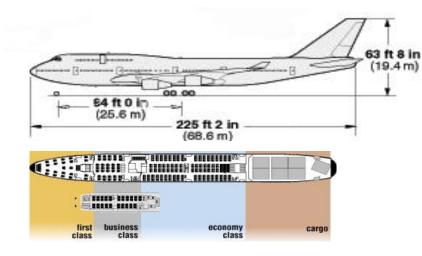
Typical Dispatch Process

***SOC** 4 Hr. *Preliminary Weight & Balance

4 Hr. * Preliminary Flight Plan

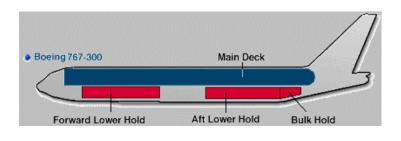
1Hr * Final Weight & Balance

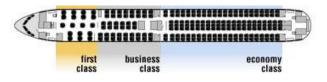
1Hr. * Final Flight Plan


*Airport 2 Hr. * Passenger Check-In 1 Hr. * Cargo Load 1 Hr. * Fuel Load 5 Hr.* Baggage Load

0.5 Hr. * Final Close-Out

Problem Areas!


What is a Combi Operation?



B-767 Combi

Lan Chile B-767-300-ER Combi

XOn an Eight-Hour Flight ... *If a typical airline carries 200 pax ... *20 tonnes of pax + baggage *5 tonnes of cargo will be typical \times 10-15 tonnes will be maximum *At Lan Chile, we carry 22 tonnes! * SCL-MIA equivalent of another 70 passengers' revenue!! *We are carrying up to 42 tonnes payload! *And our goal is 44!! *A B-767-300 F can carry 50 tonnes *By saving the weights of the passenger compartment!

Limitations on an Aircraft

*Any aircraft may have different limits affecting payload

*** MTOW -** Maximum Take-Off Weight

* More limiting as flights get longer.

* Controlled by cutting fuel.

*** MLW -** Maximum Landing Weight

* Structural issue.

* More limiting as flights get shorter.

* Controlled by cutting fuel, cutting DOW, Payload.

*** MZFW -** Maximum Zero Fuel Weight

** DOW(Dry Operating Weight) + Payload.*

** More limiting as flights get optimized on payload, fuel.*

** Controlled by cutting DOW, Payload.*

*** DOW -** Dry Operating Weight

st The weight of the aircraft.

* Controlled by removing stuff.

Interesting Corollaries

* In an optimized operation, each aircraft will have a "natural" ideal stage length for a given airline, based on cargo densities, tariffs, etc.

- * You know you are at it if the limiting factors on a given aircraft vary by flight.
- * For instance, if you are either density or MTOW limited, there is no valid benefit from Yield Management of Cargo with Pax.

***** Payload Space

*A problem with low LF flights, low density cargo (courier, computers, etc.).

X Just because you are constrained by these limits, you can't necessarily reach any of them!

* You are always transporting "holes".

* Due to suboptimal coordination.

So How Do You Optimize Payload?

- *Effective Revenue Management of passenger traffic.
- **Effective Revenue Management of cargo traffic.*
- *Effective control of passenger check-in, luggage, carry-on.
- **Managing cargo density across multiple flights, connections.*

* Also using the Bulk Hold when possible.

**Using the right aircraft!*

* All are different!!

So How Do You Optimize Fuel?

- *Careful monitoring of all flights and flight logs, annotated flight plans to reduce variance.
- *Destination-based FOD (Fuel Over Destination) reduction.
- *Developing an Enroute Diversion policy to deal with contingencies.
- *Sensitizing Pilots to how to make and save money while actually <u>enhancing</u> safety!

So How Do You Eliminate Holes?

- **Coordination, Coordination, Coordination!!!*
- *Adding Payload Coordination function to SOC.
- *Start Planning Critical Flights early in the day.
- *Run extra flight plans.
- *Have Standby Cargo, Standby Fuel to load after closeout.
- *Daily Payload Problems review.
- **Motivational Company-Wide communications.*

Lan Chile Results

* Total gains of over 4 tonnes!
* DOW - 92,400
* We cut it by 500 kilos!
* SCL-MIA Fuel Burn 44,000, Block Fuel 51,000
* We cut Block Fuel - i.e. FOD - by 2,000!
* "Holes"

* We cut empty space by 1,500!

LANCHILE